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ABSTRACT

The United Nations Convention to Combat Desertification and its sister conventions, the United Nations Framework Convention on Climate
Change and the Convention on Biological Diversity, all aim to halt or mitigate the deterioration of the ecological processes on which life
depends. Sustainable land management (SLM) is fundamental to achieving the goals of all three Conventions. Changes in land management
undertaken to address dryland degradation and desertification can simultaneously reduce net greenhouse gas emissions and contribute to
conservation of biodiversity. Management to protect and enhance terrestrial carbon stocks, both in vegetation and soil, is of central importance
to all three conventions. Protection of biodiversity conveys stability and resilience to agro-ecosystems and increases carbon storage potential
of dryland systems. SLM improves livelihoods of communities dependent on the land. Despite these complementarities between the three
environmental goals, tradeoffs often arise in their pursuit. The importance of human–environment interactions to the condition of land
compels attention to adaptive management. In order to reconcile concerns and agendas at a higher strategic level, identification of synergies,
conflicts, trade-offs, interconnections, feedbacks and spillover effects among multiple objectives, drivers, actions, policies and time horizons
are crucial. Once these issues are transparent, coordinated action can be put into place across the three multilateral environmental agreements
in the development of strategies and policy measures to support SLM. Copyright # 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

The United Nations Convention to Combat Desertification

(UNCCD) and its sister conventions, the United Nations

Framework Convention on Climate Change (UNFCCC) and

the Convention on Biological Diversity (CBD), agreed

through the UN Conference on Environment and Develop-

ment convened in Rio de Janeiro in 1992, all aim to halt

deterioration of the ecological processes on which life

depends. Management to protect and enhance terrestrial

carbon stocks, both in vegetation and soil, is of central

importance to all three conventions. Despite complementa-

rities between the three environmental goals, tradeoffs often

arise in their pursuit. However, sustainable land manage-

ment (SLM) is fundamental to achieving the goals of all

three Conventions: changes in land management undertaken

to address land degradation and desertification can

simultaneously reduce net greenhouse gas emissions and

contribute to conservation of biodiversity.

A consensus definition of SLM has proven elusive.

Adapting the well-known definition of sustainable devel-

opment devised by the World Commission on Environment

and Development (UN, 1987) to the case of land, we

consider SLM to be ‘the management of land to meet present

needs without compromising the ability of future gener-
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ations to meet their own needs’. Resilience is an important

complementary concept; following Walker and Salt (2006)

we use the term here to describe the ability of an ecosystem

to recover from, or to resist stresses (e.g. drought, flood, fire

or disease). In order for ecosystems to continue to function

under uncertain and changing conditions (and continue to

supply services on which human communities depend), they

must be resilient (Chapin et al., 2010). A major objective of

SLM is, therefore, to impart resilience to agro-ecological

systems.

This paper explores the connections among the issues

tackled by the three conventions. It describes fundamental

processes affecting resilience of human–environment

systems in the drylands. It explores scientific opportunities

for integrated implementation of monitoring and assessment

under the three conventions, focusing on those facets

affected by land management.

LINKAGES AMONG CLIMATE CHANGE,

DESERTIFICATION AND LOSS OF BIODIVERSITY

The interconnections between dryland degradation and

climate change are intimate and numerous (see also Chasek

et al., 2011). Dryland degradation exacerbates and may

itself be exacerbated by climate change. Feedback effects

reverberate: dryland degradation depletes carbon stocks in

vegetation and soils, increasing atmospheric carbon dioxide,

and climate change is likely to increase temperatures and

decrease rainfall in some regions, such as southern Africa

(Boko et al., 2007). Deforestation and desertification result

in major changes in land surface characteristics, and thus the

energy balance at the Earth’s surface, influencing climate

over large areas (Sampaio et al., 2007).

Climate change is predicted to have direct and indirect

effects on biodiversity (e.g. Theurillat and Guisan, 2001;

Hughes, 2003; Meynecke, 2004). Indirect changes include

shifts in the timing of reproduction and the size of the

reproductive output (Forchhammer et al., 1998; Crick

and Sparks, 1999; Winkler et al., 2002), changes in the

availability and suitability of habitat resources (Visser and

Both, 2005), differing habitat use, e.g. nest and shelter site

selection (Telemeco et al., 2009) and altered survival rates

(Chamaille-Jammes et al., 2006). Climate change will

directly affect the distribution of species by shifting the

location of climates to which they are adapted (Meynecke,

2004; Penman et al., 2010). Thus, climate change will

present significant challenges to those whose livelihood

depends directly or indirectly on biodiversity.

Carbon is a key linchpin between the UNCCD and

UNFCCC. Soil carbon has a critical role in the drylands as a

fundamental driver of ecosystem services such as plant

production, and contributes to increasing resilience to

climate variability and change. At the same time, the soil–

vegetation system is a substantial carbon reservoir that can

have large impacts, either positive or negative, on global

warming. Globally, the soil stores 1550 Pg of organic

carbon, compared with 560 Pg in vegetation and 780 Pg in

the atmosphere (Lal, 2004). Increases in the quantity of

carbon stored in soil and vegetation will help to mitigate

climate change. Conversely, the release of soil carbon into

the atmosphere through land clearing, for example, will

substantially aggravate global warming.

Water constitutes another important nexus for interaction

between biophysical processes of interest to the UNCCD

and UNFCCC. Increased water stress is predicted as a result

of climate change in many drylands, thus management of

water resources is a key issue in climate change adaptation

(CAA, 2007). Land use change and land management affect

water supply for all sectors. Boosting soil carbon enhances

infiltration and moisture retention, improving water avail-

ability on site. The linkage between land degradation, SLM

and water resources is most relevant, and most appropriately

managed, at catchment scale.

Just as the impacts of these environmental problems are

closely intertwined, their underlying causes are also closely

related. While the major cause of climate change is the

combustion of fossil fuels, the land use sector makes a

significant contribution, particularly through deforestation

and loss of soil carbon due to cultivation and overgrazing.

Dryland degradation also results from practices such as

overcultivation, overgrazing, deforestation, and poor irriga-

tion practices, that directly or indirectly lead to loss of

vegetation and declining soil quality. These same land

management practices reduce biodiversity and ecosystem

function through loss of habitat both on agricultural land

such as through land-clearing, and in conservation areas due

to indirect effects, such as through salinisation of catchments

(Hodgson et al., 2004; CAA, 2007). The impacts can be

distant from the cause, such as in downstream coastal areas,

where eutrophication and silt accumulation can cause

hypoxic ‘dead zones’ (Linton and Warner, 2003).

Integrating Role of Soil Carbon

Carbon plays a central role as an integrating factor in

processes leading to, and management of, climate change,

desertification and biodiversity loss (Lal, 2004). Soil organic

carbon is derived from organic matter inputs, largely from

leaf litter and root decay. Soil carbon stocks reflect the

balance between organic matter inputs and losses due to

decomposition through action of soil fauna and microbes

and physical export by leaching and erosion (Schimel et al.,

1994). Because plant productivity, and therefore organic

matter inputs to soil, are limited by moisture stress, carbon

stocks in dryland soils tend to be around half that of soils in

moist environments in the same temperature regime (IPCC,

2006, p. 2.31).
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Soil carbon declines when rate of inputs is reduced and/or

rate of loss is enhanced. Land management practices that

reduce inputs include deforestation, conversion from

perennial to annual plant species, and heavy grazing.

Regularly cultivated soils have low soil carbon, partly as

a result of disturbance of soil aggregates, enhancing

decomposition, but also due to disruption of plant growth

which reduces organic inputs (Cowie et al., 2006). Loss of

soil productivity due to erosion of fertile topsoil or soil

salinisation reduces plant production and thus reduces

organic matter inputs into the soil. The fragile microbiotic,

or cryptogamic, crust comprised of lichens, liverworts,

mosses, algae, cyanobacteria, bacteria and fungi that

develops on soils that have been undisturbed by cultivation

or heavy grazing, plays a critical role in stabilising the

surface of dryland soils against wind and water erosion

(Eldridge and Greene, 1994). It also contributes significantly

to nitrogen input and nutrient conservation (Eldridge and

Greene, 1994), and contributes carbon to the soil organic

matter pool (Beymer and Klopatek, 1991).

Soil organic matter is a fundamental determinant of soil

chemical fertility, contributing to nutrient retention and

nutrient cycling, and buffering against adverse chemical

impacts (Brady and Weil, 2008). Soil physical attributes are

strongly affected by soil organic matter: it retains moisture,

and stabilises soil aggregates, facilitating aeration, root

penetration and water infiltration, and reducing suscepti-

bility to erosion. Thirdly, soil organic matter enhances

biological activity in the soil, important to nutrient cycling

and plant health (Uphoff et al., 2006). The cycling of carbon

through biomass is at the core of provision of ecosystem

services vital to human existence and thus to sustainable

human–environment systems.

The coupled cycling of carbon, nitrogen and water, and

other nutrients (e.g. phosphorus and sulphur), governs

numerous ecosystem processes, including carbon sequestra-

tion in soil and vegetation. These coupled cycles, especially

of carbon and water, are drastically perturbed and severely

constrained by dryland degradation. Thus, minimising

losses of water from the ecosystem and enhancing nutrient

pools are important to increasing net primary production,

reversing desertification and restoring degraded ecosystems

(Tongway and Ludwig, 1996).

Above- and below-ground organisms play central roles in

carbon cycling; functional diversity is critical in that these

cycles require numerous interacting species. For example,

diversity of vegetation promotes diversity of carbon inputs

below ground, while carbon resource heterogeneity in the

soil subsequently supports belowground biodiversity (Cole-

man and Whitman, 2005). Expanding functional biodiver-

sity therefore extends the tolerance range of the suite of

organisms responsible for the ecosystem services of soil

formation, nutrient cycling, and water management, im-

parting stability and resilience to the ecosystem (Ekschmitt

and Griffiths, 1998; Moreira et al., 2008).

There is much speculation about the potential loss of soil

carbon as climate change causes temperatures to rise,

increasing microbial respiration rate and thus the rate of

breakdown of organic matter (Fang et al., 2005; Knorr et al.,

2005; Davidson and Janssens, 2006). The potential for

positive feedback, whereby increased temperatures lead to

loss of soil carbon, increasing atmospheric carbon dioxide,

thus further increasing temperature, is considered a serious

threat to stabilisation of Earth’s climate (Kirschbaum, 2006;

Heimann and Reichstein, 2008).

SUSTAINABILITY AND RESILIENCE

IN THE DRYLANDS

The ‘ecosystem stewardship’ approach proposed by Chapin

et al. (2010) integrates three strategies for sustainability:

reducing vulnerability to expected changes; fostering

resilience to sustain desirable conditions in the face of

perturbations and uncertainty; and transforming from

undesirable trajectories when opportunities emerge. Each

of these is applicable to SLM in the drylands.

Dryland environments are characterised by cycles of

change: rainfall is characteristically variable, and drought

and wildfire are common. Productive dryland landscapes

rely on spatial redistribution and concentration of water and

nutrients to achieve zones of sufficient water availability and

fertility to support growth of vascular plants (Tongway

and Ludwig, 2005). Resource redistribution also occurs

temporally: disturbances such as fires and floods release and

redistribute nutrients, and suppress dominating vegetation

species, creating opportunities for colonising species. The

spatial and temporal diversity in vegetation community

structure and species thus created supports a diversity of

fauna and microorganisms. This diversity of function,

especially if combined with diversity of response to stresses

amongst the organisms engaged in each function, imparts

resilience to the ecosystem (Walker and Salt, 2006). Tilman

and Downing (1994) showed that net primary production in

more diverse plant communities is more resilient to drought.

In the Sahelian Butana Region in the eastern Republic of

Sudan, the semi-sedentary Shukriya nomads lamented the

loss of perennial species, such as Blepharis edulis (Arabic:

siha), whose biomass and nutritive values were of special

importance during the dry season when annual species

withered away (Akhtar, 1994). Successful households in

these environments are those that are able to diversify

economic activities, to exploit different ecological

niches and economic opportunities such as new markets

(Mazzucato and Niemeijer, 2000). Transhumant and

nomadic livestock systems that respond to the temporal

and spatial variation in pasture quality and quantity across
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dryland environments achieve higher productivity than

sedentary systems (de Jode, 2010).

Resilient ecosystems are the building blocks of sustain-

able, productive agro-ecosystems. However, the natural

cycles of productive, resilient dryland systems clash with

many modern land use systems, which strive for simplicity,

uniformity and predictability. When thresholds are crossed

and regime shifts occur it is often a result of human actions.

For example, overgrazing leads to erosion of topsoil,

exposing subsoil of low fertility and structural stability. The

soil surface consequently crusts and seals, preventing

infiltration. Plants fail to establish in dry infertile soil,

so the site cannot be recolonised, and productivity is

dramatically reduced.

The problems of dryland degradation, climate change and

biodiversity loss, along with issues such as resource

depletion, pollution, and urban expansion into productive

farmland are symptomatic of society’s general lack of

understanding of natural processes. Land management

systems that protect topsoil, conserve and recycle nutrients,

conserve and concentrate water are those that will maintain

productivity in the drylands and simultaneously advance the

objectives of all three Conventions (Cowie et al., 2007).

SLM frameworks that connect the conventions should

follow integrated systems approaches combined with

learning-oriented, adaptive forms of management and

governance, recognising that simple prescriptive responses

are unlikely to be effective in managing complex, variable

human–environment systems (see also Reed et al., 2011 and

Reynolds et al., 2011). ‘Adaptive management’ refers to the

capacity of the actors in the system to adjust, reform and

reorient in response to new insights, thereby promoting

ecological and socio-economic resilience (Beddoe et al.,

2009). The CBD, through the Addis Ababa Principles and

Guidelines for the Sustainable Use of Biodiversity (CBD,

2004), advocates adaptive management for sustainable use

of native species. Governance approaches also require

adaptive capacity; recognising that dryland systems are

unpredictably variable, management must be able to

withstand and adjust to shocks. The need for adaptive

capacity is reflected in Principle #1 of the Dryland

Development Paradigm (Reynolds et al., 2007, 2011),

which stresses the dynamic, co-adapting nature of coupled

human–environment systems in the dryland ecozone.

Adaptive capacity facilitates smooth transitions to new

desirable regimes.

THE ROLE OF SLM IN ADDRESSING THE GOALS

OF THE UNFCCC, UNCCD AND CBD

Climate Change and SLM

The goal of the UNFCCC is to stabilise greenhouse gas

emissions ‘at a level that would prevent dangerous

anthropogenic interference with the climate system’. The

Kyoto Protocol allows parties to offset emissions from

other sectors with removal credits generated through SLM

practices such as afforestation and reforestation, cropland

management, grazing land management and revegetation.

Under the Clean Development Mechanism, Annex I Parties1

can offset emissions through projects implemented in

developing countries. Afforestation and reforestation pro-

jects are eligible under the Clean Development Mechanism,

though other land management measures are not.

Climate Change and Soil Carbon

The role of SLM in protection and enhancement of soil

organic carbon is a particular area of synergy between the

UNFCCC and UNCCD. The UNCCD recognises the value

of soil carbon as a key contributor to soil quality and

productivity: it recommends that parties report above and

below-ground carbon stocks as one of 11 priority indicators

for monitoring desertification (UNCCD, 2009).

It is often hypothesised that, because many dryland soils

are carbon-depleted, the vast area of drylands can serve as an

important sink for atmospheric carbon dioxide (e.g.

Suleimenov and Thomas, 2007; Vågen et al., 2005). In

reality, sequestration will be limited by factors including low

net primary productivity in the drylands; limited ability to

stabilise organic matter in soils low in soil carbon (Kimetu

et al., 2009); and the nutrient costs of storing carbon in soils

due to the simultaneous sequestration of nitrogen, phos-

phorus and potassium as the soil organic pool increases (Lal,

2004). Nevertheless, success in rehabilitation of semiarid

regions, leading to significant increase in soil carbon has

been demonstrated (Tongway and Ludwig, 1996.) The

technical sink potential through land management is

estimated at 0.3–0.5 Pg C/year for desertification control

(Lal et al., 1999) and 0.4–1.0 Pg C/year for reclaiming salt-

affected soils (Lal, 2010).

Practices that are encouraged for SLM and that also build

soil carbon include measures that contribute additional

organic matter to the soil (stubble retention, cover crops,

green manure crops, application of compost, controlled

grazing, application of fertiliser, lime or gypsum to correct

nutrient deficiencies, acidity or sodicity) and measures that

reduce loss of organic matter, such as zero tillage, contour

terracing and integrated crop–livestock–forestry systems.

Converting organic carbon to biochar to be used as a soil

amendment may benefit SLM in the drylands, and contribute

simultaneously to climate change mitigation (Lehmann and

Joseph, 2009a). While it is recognised that biomass supplies

are limited in the drylands, replacing traditional stoves with

biochar-producing stoves can increase efficiency of fuel use

1Industrialised nations and those with ‘economies in transition’.
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for energy, and supply biochar for soil amendment

simultaneously (Lehmann and Joseph, 2009b). Further

testing of biochar in dryland systems and life cycle

assessments are needed to determine the net impacts of

introducing biochar as a soil amendment when it is produced

as a by-product of a broader bioenergy initiative (Roberts

et al., 2010).

Soil carbon management in cropland and grazing land

were recognised as eligible mitigation actions under the

Kyoto Protocol,2 but very few Parties to the UNFCCC

elected to include these activities in their accounts for the

first commitment period. Changes under a future climate

change agreement may increase the attractiveness of this

option, thus facilitating participation in project-level

emissions trading by landholders, providing a financial

incentive to encourage the widespread and rapid adoption of

SLM, contributing simultaneously to the urgent tasks of

addressing climate change and combating dryland degra-

dation. Mitigation through soil carbon management is

considered one of the most cost–effective mitigation options

(McKinsey, 2009; Al-Juaied and Whitmore, 2009).

Future agreement under the UNFCCC is foreshadowed to

include Nationally Appropriate Mitigation Actions

(NAMAs), as an avenue to facilitate participation by non-

Annex I Parties (UNFCCC, 2007). There is much support for

inclusion of soil carbon management in agricultural lands as

an eligible mitigation action for a post-2012 agreement,

particularly for non-Annex I Parties, possibly through

NAMAs (e.g. Streck et al., 2010). This could mobilise

funding to support SLM at a sectoral rather than project

level, which would overcome some of the barriers to project-

based approaches to carbon crediting in the agriculture

sector (FAO, 2009).

Adaptation to Climate Change

Adaptation measures will be required at regional and local

levels to reduce the adverse impacts of inevitable climate

change, regardless of the scale of climate change mitigation

undertaken over the next two or three decades. SLM

practices that protect soil organic matter, maintain

vegetative cover and conserve biodiversity are vital to

improving resilience and capacity to adapt to the anticipated

impacts of climate change. Recognising that Least Devel-

oped Countries are particularly vulnerable to climate change

and have very limited adaptive capacity, the UNFCCC

(decision 5/CP.7) agreed to provide financial support to

Least Developed Countries, the majority of which are

affected by dryland degradation, for development of

National Adaptation Programmes of Action (NAPAs;

UNFCCC, 2009b).

BIODIVERSITY AND SLM

The CBD identifies the following land use and land

management practices as pressures that impact on biodi-

versity in dry and sub-humid lands (CBD, 2008):

� Habitat conversion (e.g. land clearing for agriculture; Holt

et al., 1999; Losos and Schluter, 2000).

� Over-grazing, which reduces diversity and can increase

the density of alien/invasive species (Henderson and

Keith, 2002; Keeley et al., 2003; Tasker and Bradstock,

2006).

� Introduced species, often causing the extinction of native

species or drastically altering community structure

(Savidge, 1987; Holdaway, 1999; Matarczyk et al.,

2002; Downey et al., 2009).

� Change to natural fire regimes, such as through fires

suppression or managed burning, which inadvertently

changes vegetation composition and structure and as a

consequence affects faunal community composition

(Keith, 1996; Andersen et al. 2005; Penman et al. 2008).

� Changes in hydrological flows and balances through

regulation and diversion for domestic, agricultural and

power generation purposes, reducing diversity of fauna

and flora and often causing salinity problems (e.g. King-

sford, 2000; Cramer and Hobbs, 2002).

� Overharvesting of species, which can lead to ecosystem

collapse (Novacek and Cleland, 2001; De Roos and

Persson, 2002).

� Soil management practices (fertiliser application, cultiva-

tion, fallowing and crop rotations). For example, changes

in nutrient balance can affect species composition and

may reduce the diversity of soil microbial communities

(McLaughlin and Mineau, 1995; Grevilliot et al., 1998)

and the flora/fauna that rely on the ecosystem services that

microbes provide; eutrophication of downstream water-

ways and nutrient enrichment of conservation areas can

have detrimental consequences for aquatic and terrestrial

biodiversity.

� Cultivation of fewer and more genetically uniform crop

species, due to influence of agribusiness and market

demands, which reduces the diversity of agro-ecosystems.

SLM practices counteract the negative impacts on

biodiversity of the management actions listed above. They

increase the diversity of production species and systems,

reducing vulnerability to pests, diseases, and climatic

variation, and enhance soil microbial diversity. SLM at

landscape scale protects native habitat remnants needed by

pollinators and biological control agents. SLM also reduces

the use of pesticides and chemical fertilisers which are

harmful to many species. SLM promotes agricultural

systems that mimic natural systems in order to maintain

ecosystem function and may include the sustainable harvest2Under Article 3.4, applying to Annex 1 countries, but not under the CDM.
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of native species, generating value that motivates the

conservation of these species. These measures are congruent

with strategies of the CBD, viz., to conserve production

species and minimise adverse impacts on surrounding

ecosystems. The CBD recognises that conservation and

restoration of the physical and chemical interactions within

the environment, and relationships between species and the

abiotic environment, ‘is of greater significance for the long-

term maintenance of biological diversity than simply

protection of species’ (Principle 5 of the Ecosystem

Approach, CBD, 2000). Thus there are strong complemen-

tarities between the goals of the CBD and SLM practices.

MULTIPLE BENEFITS OF SLM

Ecosystem services delivered by agricultural systems can

include provisioning services (provision of food, feed, fibre

and fuel), regulating services (regulation of climate, water

quality and quantity; regulation of populations of pollina-

tors, pests, pathogens, wildlife; nutrient cycling) and cultural

services (aesthetics, spiritual services and recreation) (MA,

2005). Studies that have sought to quantify the economic

value of market and non-market services from alternative

land uses have demonstrated that while sustainably managed

systems may have lower market value, they commonly have

greater total value when non-market ecosystem services

are included (MA, 2005). Greater biological diversity,

promoted by SLM, contributes to this higher value. For

example, Sandhu et al. (2008) determined that the value of

ecosystem services was greater under organic than

conventional farming methods. Physical protection of crops

and biological control of pests, arising from the use of

shelterbelts and avoidance of pesticides, which enhance

biological diversity, contributed to the higher value of

ecosystem services in organic farms. Similarly, Porter et al.

(2009) estimated the total market value and non-market

value of the services from pastures, croplands and mixed

biomass/crop/pasture systems and demonstrated that

biodiverse mixed systems had higher ecosystem service

values than cropland.

SLM and Alleviation of Poverty

All three conventions recognise the need for sustainable

development, to provide a livelihood to communities

dependent on the land. The UNCCD enunciates alleviation

of poverty as a core objective, acknowledging that

impoverished communities have little capacity to respond

to environmental challenges. SLM practices have the

potential to simultaneously deliver environmental benefits

and improved livelihoods: in their review of the impacts of

agricultural practices across a wide range of agro-ecological

regions and farming systems in developing countries, Pretty

et al. (2006) found increased productivity where sustainable

practices, including conservation tillage, water conserva-

tion, agroforestry, integrated pest management, and integ-

ration of livestock into farming systems, were implemented.

Besides higher yields, sustainable systems had higher water

use efficiency, and lower costs (in terms of fertiliser and

pesticide inputs) than conventional practice (Pretty et al.,

2006). Thus, SLM can enhance food security and rural

incomes. However, specific conservation farming practices

are not all universally applicable, and local solutions to SLM

have not yet been sufficiently developed for all situations

(Giller et al., 2009).

SYNERGIES AND TRADEOFFS IN ADDRESSING

THE GOALS OF THE CONVENTIONS

SLM practices that conserve moisture, maintain or enhance

species diversity such as conservative grazing, reduced

cultivation, retention of crop residues, replacement of annual

with perennial species, use of mulches and green manures,

reforestation and revegetation to create windbreaks and

shelter belts, and utilisation of native species, simul-

taneously and synergistically contribute to the objectives

of the three conventions (Cowie et al. 2007). Furthermore,

SLM practices enhance productivity and nutrient and water

use efficiency, thus contributing to the UN Millennium

Development Goals of reducing hunger and alleviating

poverty.

However, while there are synergies among the objectives

of the Conventions, tradeoffs must also be acknowledged.

Optimisation for one objective can reduce outcomes for the

others: for example, a monoculture of an exotic plantation

species may produce the greatest carbon sequestration rate,

but will clearly have reduced biodiversity value compared

with revegetation with mixed form native species. Density of

shrubs and trees is increasing in many semi-arid areas (with

introduced species, e.g. Acacia nilotica in northern

Australia, Prosopis juliflora in Kenya’s drylands, Mimosa

pigra in Zambia’s Lochinvar National Park; and with native

species, e.g. Callitris glaucophylla in New South Wales,

Australia, and Acacia mellifera in Namibia). This shrub

encroachment reduces grass cover, which may increase

susceptibility to erosion if stocking rates are not reduced,

and can affect soil condition through acidification (Tighe

et al., 2009), reduce biodiversity (Ayers et al., 2001;

Genovesi, 2009), and reduce grazing value and thus

economic returns. However, it sequesters carbon (McHenry

et al., 2006), contributing to climate change mitigation. One

possible integrated approach for the drylands could be to

harvest invasive species as a feedstock for local bioenergy

initiatives, with biochar as a valuable by-product. After a

few cycles of regrowth and harvest for bioenergy and

biochar production the climate change mitigation value

would be greater than the potential carbon storage in the
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vegetation. This approach would enhance grazing value of

the land, and assist in management of biodiversity loss and

soil erosion due to loss of understorey species caused by

bush encroachment. The risk of environmental and health

impacts through release of methane and particulates from

biochar production facilities (Downie et al., in press) could

be managed through promotion of systems that control

smoke and capture methane. Care is also needed to avoid

environmental and productivity risks potentially associated

with biochar (Downie et al., in press) or bioenergy

production if biomass is supplied from unsustainable

sources (e.g. crop stubbles required for erosion control

and moisture retention, or primary forest).

POTENTIAL FOR A COMMON APPROACH TO

MONITORING AND ASSESSMENT

The three conventions acknowledge the interactions

between environmental issues, and consequent need to

simultaneously address each of their goals. Chasek et al.

(2011) discuss the activities that have been undertaken to

achieve coordination in implementation of the conventions.

This is important as a lack of coordination could lead to

duplication of effort and competition for resources.

Coordinated action between the conventions can optimise

outcomes, and could increase efficiency of monitoring and

reporting, thus reducing total costs of pursuing these goals

(Chasek et al., 2011).

SLM IN UNCCD MONITORING AND REPORTING

The UNCCD’s 10-Year Strategy (2008–2018) includes a

global hierarchical framework of Strategic Objectives,

Expected Impacts, and Indicators intended to guide

monitoring and assessment (UNCCD, 2007). Nationally-

and regionally relevant indicators are to be developed for

reporting the implementation of the 10-Year Strategy

(UNCCD, 2007). Numerous framework elements reflect

SLM objectives. Strategic Objective 3 is specifically geared

towards strengthening the connections to sister Convention

topics; its expected impact 3.1 is ‘SLM and combating

desertification/land degradation contribute to the conserva-

tion and sustainable use of biodiversity and the mitigation of

climate change’. Connections between UNCCD and CBD

indicators, as mapped by the 2010 Biodiversity Indicators

Partnership (2010 BIP, 2009), are shown in Table 1, and

discussed further below.

SLM IN UNFCCC MONITORING AND REPORTING

The Intergovernmental Panel on Climate Change (IPCC) has

developed internationally agreed methodologies that parties

use to estimate greenhouse gas emissions and removals to

report to the UNFCCC (Houghton et al., 1997; Penman

et al., 2003; IPCC, 2006). The 2006 inventory guidelines

include, inter alia, a volume on Agriculture, Forestry and

Other Land Use which describes methodologies for

estimating greenhouse gas emissions and removals where

changes in land use or land management practice have

occurred. The methodologies for estimating carbon stock

changes in soil and woody vegetation through practices such

as cropland management, grazing land management and

revegetation are applicable to monitoring aspects of SLM.

The future (post-2012) climate change agreement is

currently being negotiated. It is expected to include

provision for NAMAs and sectoral approaches in imple-

mentation and accounting for mitigation actions. Sectoral

implementation of SLM would overcome some of the

barriers to participation of smallholders in project-level

mechanisms. Monitoring the impact of sectoral approaches

will require national greenhouse gas inventories for the land

use sector, and where NAMAs are internationally supported,

at least minimum levels of monitoring and reporting (FAO,

2009). Approaches for sectoral accounting in agriculture

could learn from approaches being developed for Reducing

Emissions from Deforestation and Forest Degradation in

Developing Countries (REDD; UNFCCC, 2009a).

Climate change takes place in a unitary system because

greenhouse gases mix in the atmosphere, whereas land

management is locally expressed and therefore highly

diverse. Accordingly, IPCC has a global focus, while

dryland degradation research has emphasised the local and

regional scales. The link between land use change and

climate feedbacks was not emphasised in the IPCC’s Fourth

Assessment, but future assessments at regional scales are

expected to consider SLM-climate interactions.

SLM IN CBD MONITORING AND REPORTING

The 2010 Biodiversity Indicators Partnership (2010 BIP,

2009, http://www.twentyten.net) is a global initiative to

monitor progress towards the CBD indicators. It also seeks

to help update those indicators as part of the CBD strategic

planning process, including the harmonisation of those

biodiversity indicators between the three Conventions. The

2010 Biodiversity Indicators Partnership proposed a

harmonisation framework at the UNCCD First Scientific

Conference, reproduced in Table 1 (2010 BIP, 2009) that

forms a basis for further collaboration. CBD indicators

shown in bold in Table 1 are those that we have identified as

particularly relevant to SLM. The CBD has recognised that

its current suite of indicators does not adequately assess

SLM, dryland degradation and agricultural biodiversity,

especially with respect to diversity of species, breeds and

varieties (Secretariat of the CBD, 2004). The UNCCD could

work with the CBD through the Biodiversity Indicators
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Partnership to address these areas of recognised deficiency,

specifically in identifying indicators that assess the under-

pinning processes of ecological function, and the identifi-

cation of tipping points (Leadley et al. 2010).

Future Development of Indicators for Monitoring

Dryland Degradation, Climate Change and Biodiversity

In earlier sections, we identified the following as critical to

sustainability and resilience in the drylands: conservation of

water and nutrient resources; protection and enhancement of

soil carbon; maintenance of diversity in agricultural

systems; and implementation of an adaptive management

framework.

The UNCCD indicator framework (left hand side of

Table 1) addresses some of the fundamental aspects of SLM

in the drylands. The critical and integrative factor soil carbon

is included in S-3. Indicators S-1, S-2 and S-3 assess trends

in condition of physical resources, while indicators S-5, S-6

and S-7 consider the condition of affected populations.

Measures of response are also included: S-4 addresses

directly the area managed under sustainable practices, while

S-8 and S-9 assess the existence of supportive policies.

The aspects of resource conservation, and maintenance of

genetic, structural, spatial and functional diversity, could

be addressed through national and regionally-relevant

indicators for S-4. Similarly, S-9 could include recognition

of adaptive management. It is important that these drivers

of resilience are factored in when local indicators are

developed.

Having identified indicators, data must then be located or

generated. Remote sensing is a viable tool for assessing

resource condition in the drylands. For example, the

‘Pastures from Space’ program is used in Australia to

predict pasture growth using MODIS satellite imagery

(Smith et al., in press). Applications of remote sensing for

monitoring dryland degradation are discussed by Buene-

mann et al. (2011).

A critical element identified above that should be

considered in development of indicators is vulnerability.

Attention should be given to development of indicators

relevant to underpinning processes of ecological function,

and identification of tipping points, acknowledging that the

latter are situation-specific, and require sound process-level

understanding. For example, in the case of soil carbon, it

may be enlightening to utilise, in addition to total organic

carbon, more sensitive measures that discriminate between

the stable and labile fractions, which would indicate the

vulnerability of soil carbon stocks. Quick, cheap methods

based on mid-infra red spectroscopy (Janik et al., 2007)

could be applied, particularly if future technological

development allows in situ measurement.

Process-based models, in combination with remotely-

sensed data, will be a valuable tool for monitoring condition

with respect to critical thresholds. Sustainability of grazing

in Australian rangelands has been assessed by Carter et al.

(2007) through modelled estimates of pasture growth and

utilisation, based on climate data, fire events and stocking

rates.

Vulnerability of human populations, while undoubtedly

complex, can be quantified, for example, through rural

livelihoods analysis (Ellis, 2000). Using a combination of

measures of human, social, natural, physical and financial

capital Nelson et al. (2010) applied a composite index of

adaptive capacity to assess the vulnerability of rural

communities in Australia.

Future development of the UNCCD framework should

focus on mechanistic connections between indicators. If

linkages between, e.g. soil properties and livelihoods are

better quantified, indicators of soil condition may aid in

addressing sustainability constraints more effectively.

There are substantial opportunities for mutual benefit by

connecting local and global perspectives, for example by

developing accounting approaches for project-level SLM

interventions, as is being done by the Carbon Benefits

Project (GEF, 2010). Further development of practice- or

activity-based monitoring approaches to accounting for

benefits from adoption of SLM practices (e.g. Woelke and

Tennigkeit, 2009) have potential to link the monitoring of

climate change mitigation and adaptation with the infor-

mation needs of other conventions.

CONCLUSION

The linkages between the goals and actions of the UNFCCC,

CBD and UNCCD are numerous and the benefits from

tackling these environmental issues in concert are many, as

are the risks in focusing on one area alone. Carbon is an

integrating factor: maintenance or enhancement of carbon in

vegetation and soil contributes to climate change mitigation

and reduced dryland degradation, and can enhance

biodiversity.

Process-level understanding of the human–environment

interactions underpinning dryland agro-ecosystems is

fundamental to identifying effective management ap-

proaches to simultaneously tackle the objectives of the

three conventions. The following must be recognised in

developing monitoring and assessment strategies for dryland

systems:

(1) An optimum stable state is not an achievable goal

because dryland systems are dynamic; cycles of change

are a natural feature of the drylands, where rainfall is

characteristically variable and drought is common.

(2) Resilience is critical to sustainability in this dynamic

environment, and is fostered by preservation of diversity

and redundancy; a focus on maximising production in
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the short term reduces resilience and strains ecosystem

integrity.

(3) Monitoring and assessment strategies should be cogni-

sant of nonlinearities in ecosystem responses, especially

thresholds that signify potential system collapse; man-

agement must be responsive to monitoring, and ready to

intervene to maintain ecosystem function and pro-

ductivity.

SLM promotes management practices that mitigate

dryland degradation, climate change and biodiversity loss,

though there are inevitable tradeoffs in that outcomes cannot

always be maximised for all three objectives, especially in

the short term. Key attributes of SLM to be monitored are:

conservation and effective use of water and nutrient

resources; maintenance and, wherever possible, augmenta-

tion of soil organic matter; preservation of diversity in land

use and agricultural production species; and implementation

of an adaptive management framework. There is consider-

able potential to combine effort and resources to build

capacity for monitoring and assessment of SLM under the

three conventions.
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